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We examine linear controllable systems under the condition of incomplete infor- 
mation on the current phase state, when at each instant only certain functions of 

the phase coordinates are accessible to measurement. We assume that noise, for 
which there is no special description, enters into the controllable system and into 
the measurement (observation) channel. Only the exact deterministic constraints 

which this noise satisfies, are known. At each instant the optimal controls are syn- 
thesized from the information on the whole previous history of observation on the 
basis of a minimax criterion for a convex function of phase coordinate values at 

the termination instant of the process, Thus, in the paper we examine a specific 

information game problem of conflict control Cl]. The peculiarity of the prob- 

lem manifests itself in the fact that here we are required to optimize as an aggre- 
gate both the synthesis process of the optimal control as well as the process of 

continuous estimation of the magnitudes of the current phase coordinates. The 

latter leads to the use of both the extremal constructions of the theory of differ- 
ential-game problems of dynamics [l, 21 as well as the functional constructions 
for minimax problems of position observation and prediction [3, 41. Fundamen- 
tal attention is given to the constructive formation of the sol urion within the frame 

work of convex analysis [5, 61. The investigationsin [7-91 were devoted to a dif- 
ferent formulation of problems on the combination of control and observation. 

1. Available information. Statement of the problem. Suppose 
that a controllable’ n-vector-valued quantity r(t) varies in accordance with the equa- 
tion 

2 (t) = A (t)s,(Q + B (t)u + c (G f f (0 (1.1) 

Here u and u are p- and qdimensional controls, respectively, f (t) is a known local- 
ly-integrable function. The m-dimensional quantity 

Y (0 = G (t) z (t) + F (% (1.2) 

is accessible to measurement at every instant t, beginning with the initial one equal 
to t, - h, h > 0, where E is the noise in the measurement (observation) channel. 
The system (l.l),(l. 2) is examined on a fixed time interval [t, - h, 6 1. The sys- 
tem’s coefficients are assumed continuous. The constraints 

a It1 E P, 2, [tl E Q, k [tl E R (1.3) 

for all t. where P, Q, R are convex compacta, known in advance in R(p), R(q), Rcr), 
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respectively, are imposed on the realizations u [t], II [ tl , g 1 i 1 of the quantities U, 

u, g. It is essential that the realizations ZJ [t], F, [t] themselves are not given before- 
hand. Contrarily, the control u is subject to determination at each instant t ; therefore, 
the realization ZL! [ +I = IL. [t + CJ] can be taken as known. Here and later we adopt 

the notation g, [ . ] -= g it J_ 01, &)-IL - t<o,<o, 6t (*) = g (1 -I- 4. 
We form the control u from the previous history of observation, i. e. from the func- 

tion ?/ = 2/ [t + o] realized by virtue of (1.2), assuming that a “storage” of the quan- 

tities 71~ [ .I, ut [. ] occurs, 
a function zL [ .I, where z it] 

Farther on it is convenient to examine, instead of rlt [ * 1 1 
(z (t)) is a solution of the equation 

z’ = A (t)z + B (t)a [tl + f (t), z (t, - h) =: 0 
uniquely determinable from IL ]t] (U (t)). Thus, by the position of system (1. l), (1.2) 
we mean the quantity {t, 5, (.)}, where <t (a) = {vl 1.1, z, [.I}. We seek con- 
trol u as a functional of the position: u = IL (t, .) = IL (t, &, (.)). The class of 
admissible functionals u (t: .) is defined below. 

Definition 1.1. The set of those and only those vectors .C E i?I’J for each of 
which we can find functions 1; (T), c (T) satisfying (1.3), t, - iz ._I< T 6 t , such that 

the solution !/ (t) of system (1.1),(1.2), found for .?: ~= J (t), :‘ -1 zi (t), 5 = $ (T), 

7C = ZL ]s],on the interval It,, - h, t] satisfies the condition y (2) : !/ It], IS called 
the region X (t, *) = X (t, <t (a)) admissible by position it, CL (e)}. 

Suppose that we are given two functions &‘(e), gj;l (. ). We define the distance 
between them in the following way (f,, - h \r r -< t, ti < &): 

d (y”’ ( . ), yj;, (. )) == 11 max: Ij y*:(l) (T) - y@) (T) /I 

y*(l) (T) E $1) (t), T E [t,, - II, t,l; j/*(l) (z) zzz y(l) (t1), T ‘i- t, 

Here I/ + 11 is the Euclidean norm. The distance d (z::’ (.), zif’ (.)) is defined ana- 

logously. The distance between the convex sets Xi, X, is defined with the aid of the 

Hausdorff metric. 
Definition 1.2. The multivalued functional U -1 U (t, x (t, <, (e))) with 

values in the form of convex compacta contained in 1': upper-semicontinuous by inclu- 
sion in X (t, a) for dt > 0 , is called an admissible .x-strategy of the control. 

The notion of the semicontinuity here is the standard one, taking into account the 

form of the metric in the set of sets (x} We consider a subdivision of the interval 

[t,,, 0 J into semi-intervals of the form (ri, ~~+i), ~i+r - 7~ MY: Ai > (1, &I ~~~ 711. 
Definition 1.3. The single-valued functionals of the form lj (t, ri, cTi ( *)) 

with values in P, continuous in t on the inrervals of t FZ ]ri, ri+i) (~1~ <_i A for any 

i) , are called admissible A -strategies. 

We denote by uO, Gi , respectively, the strategy classes corresponding to Definitions 

1.2, 1.3. Let (I; (f. -) z- u (t? <t (-)) b e one of the strategies mentioned. By a 
motion of system (1.1). (1.2), generated by U (t, a) and by a fixed pair of functions 
11 ] ,+], CI, It], we mean all pairs of functions r [tl, y I tl of the form 

.i‘ It1 p It1 -1~ 2 Irl, !/ itI Q It1 -I- r !tj (1.4) 

where for almost all t 

p’ [tl A (2)/I it1 - c (f)l’ [tl; q [tl G (t)p [II -; iv (I); [II 0.5) 
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2’ Itl - A (t)z (tl + R (t)u It1 -!- f (t) (1.6) 

r It1 -_ G (t)z Itl, z[t,--21 =o, 76 [rl E u (t, *) 

For piecewise-program A-strategies the existence of a solution follows from the gene- 

ral properties of linear differential equations, and the following condition is valid for :I 

strategies : a solution of system (1.4) - (1.6) exists if for u 1 t] L 1) the multivalued 

function X (t, c, (e)) is continuous in t , for any pair u it], ; 1 t] , on the whole inter- 

val [to - h, 6 1. except, perhaps, for only a countable set of points, 
We define the initial position of the system. We assume that the formation of II It] 

can begin only at the instant t, (whereas the information on the function !/ Itf comes 
in from the instant to - /h). The realization is taken as specified on / I,, - jr. t,, / . 
Here, for the sake of definiteness, we take II [t] 5 0, t,, - h _:I t .< lo. 3ne result 
of the assumption made is that the region x (t,,, &, ( * )) admissible by initial position 

<!,(.I = I!/,, [*I, o> is already known at the start of the formation of control II {t] . 

This region is bounded if the homogeneous system (1. l), (1.2) is completely observable. 
(The assumptions indicated can be replaced by the condition .r (t,,) E X,, where X,, 
is a given bounded set). 

Let cI> (X) be a proper convex functional given on the metric space F ---- (X) of 
closed convex sets in I?(ll) with a Hausdorff metric. In particular, we can have {y is a 

proper convex function in R(‘Q [S]) 

We denote 

g f.) r= g(t), g [*I -= g[tl, &.---I& <; t<s (1.3) 

@” (t,,, GO (-1) rz mint if..) n~as,Y.,.[.l.:[.l mas,[.l @ (X (6. &(~))f 

Uere U (t, .) +z U, where U is one of the above-mentioned strategy classes U,, 

Us; .)‘E x ti,,, St, (*)), z I-1 cr;r: Z (-), h w ere Z (* ) is the set of trajectories of 
system (1.6) with tc 1 t 1 E U (t9 -). Thus, each strategy U (t, .) generates a set of 
trajectories s [ - 1 and each triple {.r, 2’ [ . 1, E [ . ] ) g enerates the realization !/ I?] - 

r I-Cl, 4, < T << 6 , namelv, one of the possible continuations onto the interval [t,, 
6 1 of the signal !f [&I i- O] - I’ it, + o]. --h < G < 0. In its own turn, each 

pair !/t I + 1, zt f - 1 defines a point set X (6 , <a ( * 1). The paper’s purpose is to ascer- 
tain existence conditions and to determine the optimal strategy E;” (t, . ), ensuring the 

exact equahry CD” (to, c*, (*)f z maxx, c[.l. ct.1 maq.1 rf, (AX (a, 5e t-1)) (1.9) 

1’ ftl E Q. % ftl E J? for all t 

5 E x (to, 5f, (. I)1 z(.)EZ~(.) (Z”(.) LT; Z(.) for U(t,*) = U”(I. .J) 

or else an approximation of it. 

2. Estimate of admi~lfbi6 tegiont, The solution of the problem presumes 
looking on the combined optimization both as a control process as well as an observa- 
tion process,i.e. an estimate of the regionof sojurn of the phase vector 3’ at each current 
instant. 

Suppose that on the interval t E Ito - h, tl we have realized a control ?ri / + ) 
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generating by virtue of (1.6) a trajectory z [t] and realized a function !/, [. ] measured 
in the observation process. The realization !/, [ + ] could not arise for just any I’, 1.1. 
51 1.1, .I‘ (t). Name1y.k nowledge of !ii [. 1 permits us to establish a p OS t e r i o r i 
the set of those and only those values of the phase vector .,‘ .r‘ (1) for each of which 
we can find measurable functions 1’ (T). : (T), T ~15 It,, - /L, t/ with values in Q 

and H ,such that the elements {.i. (t) .r, IT -: ?. (T). j - ; (T), 11 I( ITI} 
together generate, by virtue of system (1. l), (1.2), precisely the realization 7, (7) _G 
!/ [T I. The stated values of {.I.} can solely be compatible with the realization j/t 1 .I. 
The set of vectors (.T} indicated forms the region X (t. <, (s)) = X (1, a) admis- 
sible by position <, (+) 7: {!it 1 .I, z, [. 1) according to Definition 1.1. 

The description of the region X (t, .). as well as the dynamics of its variation du- 

ring the course of time, depending on the position {t. St (.) } realized, comprise an 
important element in the solution. Here we stress that it is precisely the dependence 

of X (t, .) on {t, St (e)} (and not on t alone) that leads to the problem of combined 
optimization of the control and observation processes. (In the contrary case we would 
have the problem of control when the current state is a convex set known beforehand). 

By the symbol p (1; Q) 7 sup I’([, 7 E Q (the prime denotes transposition), we 

denote the support function of the set Q [ 71. A detailed derivation of the formula for 
1) (I; X (t, .)) and the description of the properties of set X (t, .) have been presen- 
ted in [3, 41. In them it was noted, in particular, that the sets X (1. .) are closed and 

convex, and conditions were derived ensuringthe boundednessof X (f, .) for any posi- 
tion {t, j, (.)}. The conditions mentioned reduce to the requirement of complete ob- 

servability of system (1. l), (1.2) (with c x 0, g _. 0, II 0) on any finite time 
interval, which requirement we take as fulfilled in what follows [4]. According to [3] 
we have 

P (1; x (t, .)) ~; l’Z it1 t- 1) (I, i, (.), t. t,, - h) (2.1) 

\’ 
!,Lh 

IP (A (f, 4 I: (a nj -t h (t, q (y [Tl - z [Tl)] dz 

over all h (t, .) E .\ (t, I), where .1 (t, 1) = {h (t, .) 5~ h (t, Tj. t,, - h & 
; & t} is the set of all solutions ofthe equation 

s (t; P. (t, .)) = 1 (2.2) 

in the class of square-summable m-vector-valued functions: 1, (t, r) E ZJ!,m), r 17 _ 

[t, -- h, t]. Here s (T: J, (t, .)) is the solution of the equation 

ds i ~TI = --sA (T) i_ 1, (t, T)G (T), s (t, - h) = 0 (2.3) 

We consider the set 

G(&t,~,z[ZtIt]).== /J (X(;,,t)r+~[:i~t]--X(~/.5)(_(~)c.(S)d~~ (2.4) 
?.(.) C 
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being the attainability region of system (1.1) from the state rr (t) = 5 in time 6 - t 
under controls D (T) E @ for a fixed IC == II [T]. Here X (fj, t) is the normed funda- 
mental matrix of the homogeneous system (1.1). We denote 

G(C), 5, Q, z [I? 1 11) = ,:‘Q G(o , t, 4, z [I? I tl) (2.5) 

Further, let l/fl 1. ( tl denote a segment of the realization of signal ?/ [T] of (1.2) on 
the interval it, t,] ( i . e . !!I [. 1 tl = y [t, -t 01, t - t, c’; CT <_ 0, and 
let zl, [. ) tl be the analogous segment forz [t]; let rr’ (t,, . 1 t) =--_ 4y :r,, ct, (. 1 t)) 
be a region of the phase space, admissible by the quantities {lir, [. 1 t], zt, ] 1 t]} _ 
<,, (. 1 t) (i.e. satisfying Definition 1.1 wherein we should take it, (. 1 t)) instead of 

Tt, t .)I* 
Lemma 2. 1. The equality 

x (tz, Sr, (a 1 to)) = -i- (tz, 51, (- I tl)) fl G (iz, tl, X (TV, 51, (. 1 to)), ~[t,ltd (2.6) 

(to < t, -Cb t2) is valid. 
We prove the validity of (2.6) by comparing the support functions of the convex com- 

pacta occurring in the left- and right-hand sides of this relation. According to (2.1) we 
have 

P (I; x (t,; Ct, (. 1 to)) = ~‘2 It, 1 toi -+ 4 (1; 5!, (. ( t,,), t2, t,,) (2.7) 

On the other hand, from (2.4), (2.5), [5] we obtain (in detail writing) 

P (I; G (hr tl, >:(tl, ct, (. J to)), .z [fz ( 211)) = Z’X (f2, !I) 2 [I-,; -t (2.8) 

inh.) CC ” P (s (E; h (tl, -ho B (9; Q) dE -I- 

~IL~t,.;;(piEl-ziil)+y(hit,~i)F(r): X)lcEE] -t 
te 
11 

s P (s (tl; h (h, .))t, X (tl, E) B (9; Q) dE 
t1 

over all h. (tI, r) satisfying the equality 

s (t,; h (tr, ‘))P = 1’X (tz, tr) 

Here s (T; h (tr, * ))t, is the solution of (2.3) when s (t,) = 0. 
Analogously, from (2.1) we find 

P (k x (L L ( - I h))) = l’z It2 I hl + 

infA(t,, .) ‘* [P (s (E; h (h, -))I~ B (8; Q) + CS 
t1 

(2.9) 

(2.10) 

h (tz, E) [Y [El - .z 1E.l) + P (a (t,, f,) F (8; WI dE) 
over all a (te, T) satisfying the equality 

s (r,; 1, (tz, *))t, = 1’ (2.11) 

Now, taking the structure of the right-hand side of (2.6), equalities (2.7) - (2. ll), and 
the formula p] 
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into consideration, we arrive at once at the support function of the right-hand side of 
(2,6), coinciding with expression (2.8). 

Corollary 2. 1. The condition 

G(6, t,, X (tI, s), z 16 1 t,l) 2 G@, tz, X (L a), z t@ / &I) c2.w 

(& > 11) is valid for arbitrary realization u It], to 6 t \<$j, generating the quanti- 
ties 2 [6 1 t,l, 2 IS 1 t,l. 

In fact, on the one hand we have the valid equality [I] 

G (6, t2, G (h, t,, X (tl, a), 2 bz 1 41)~ Z [@ 1 &I) 

and on the other, according to Lemma 2.1, 

X (t?, .) c, G ft2, t,, X (tl, -1, z It, J 41) 

Condition (2.12) now follows from the obvious inclusion (see (2.5)) 

We say that a function G (t) (G are convex sets) has a jump at i -: t, if the func- 

tion p (1; G (t)) has a jump at the point t == 2, even if for one 1. From the 

convexity and compactness of sets G (6, t, X (t, . ), z iS 1 tl) we arrive at the fol- 

lowing conclusion (see Lemma 2.1). 
Lemma 2.2. The function G (6, t, X (f, a), z [6 1 tl) = G iti has no more 

than a countable set of jumps. 

3, An auxiliary prediction problem, Suppose that at an instant 1 E 
[to,+] we have realized the position {t, & (a)}, 5, (0) = (!lt l-1, zf [*I>, gene- 
rating the set X (t, .) (admissible by this position). Let us fix a triple of functions 

IL* (.t), 9 (T), E* (I$, t ,< z -(B with values in I-‘, Q, H, respectively. Then G*(X) 
generates the realization .zg * ( . 1 t) , namely, a segment of the solution on (t, 6 ] of 

Eq, (1.6) with u [tl := U* (t). In turn, zg * (. 1 tl. v* (t), E* (T) generate the 

set of realizations Y (. ] 1) = (Ipa * (. 1 t) 1 z]}, ,x E X (t, -). Here [JJS * (- 1 t) 
1 S] is the sotution oh it,@ 1 of system (l.l),(l.,Z) with IE = U* (.G), u = Q* (t), 

li, -: j* (T), n: (t) = z,Thus, each of the functions [:/a * (- 1 t) 1 s] is one of the 
possible continuations of realization !/I [s ] onto the interval (t, 6 1 when the quantity 

z*a (- ] t) is simultaneously realized on it. Here each of the mentioned possible con- 

tinuations of signal !/t 1 s 1 (. 1. e. each of the elements of Y (. 1 t)) is generated by 
the functions U* (t), z* (x) , and by one of the vectors z E X (4 a). 

We introduce the notation 
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If at instant t we have realized the set X (t, .), then (for u = u* (r), v = V* (t), 

E = E” (r), r E It, @I) at the instant 6 we can make an a priori realization of 
anyofthesets X(6, . 1~) = X(6, IE9* ( a) 1 xi). According to Lemma 2.1 we have 

X (6, . 1 x) = X (6, I Sa* (q ! t) 1 xl) n G (6, t, X (t, .), z*(+l)t)! (3.1) 

Let us find the support function of set X (6, - 1 x). Using the concepts presented in 
Sect. 2, we find 

p (I, x (6, - 1 s)) =I zrz* (6 1 t) + E’X (6, or -t (3.2) 

p (1; X (6, t)G(*) (t, .r) 0 G(") (6, t, P* ( .) it* ( *I)) 

G(l) (t, J) = X (t, *) - x 

p (1; G@)@, t, u* ( a), E* ( .>) -= 
33 

infh(8,.) SuPa(. 
I 
* Is (7; 7” (6 , * ))t c (7) (E* (4 - 1: CT)) + 

I. (6, z)F (z) g* (t) t- E (T))ldll: (s (6 ; h (6 t ‘)h = 1’) 

Formula (3.2) yields an exact solution of the prediction problem, namely, a description 
of all a priori possible realizations X (6, * 1 Z) of set X (6, m); if X (t, *) is 

realized at instant t . 
Let us consider the problem of the program maximin of functional @ 

8 (t, *) = e” (t, & (s)) = n~i\s,~,~~,~ niin,,JD (X(6: -1 .r)) (3.3) 

.r f x (t, *), u* (r) E Q, g* (z) E R, zE* (T) G P, I -c-. ‘T s: 19 

The quantity a” (t, -) is the best guaranteed result from functional @ if at instant t 
we pass to a purely program control, having received no additional information what- 
ever on position (‘t., 5, ( e)} f or 7 > t . We define the functional CI, (X) concretely 

later on by choosing it in form (1.7). Solving problem (3.3) with the aid of formula 
(3.2), we arrive at the assertion 

e* (I, *) ~- sup, (U’ (t, x (t, *). 1) - cp *(--l)}, 1 fz I?(“) (3.4) 

‘V (t, x (t, .), I) :- i (p (Z’X (8, t) c I-c); Q, - 

p (Z’S (0, z) B (tf; P)) dz -+ 1’ (-- Z’X (S, t) x (I, * 1) 

Here rp* (I) is the function adjoint to (1~ (I) , so that (p (z) -:: SUP (1’~ _ cP* (I)) 
over all 1 E It!@) f5J. We note that the equality 

y (t, X (& .), --I) : Tllirl,,~. p (1; C(4 , t, X (t, +), 3* (0 1 1)) (3.5) 

(t&* (T) e 1)) is valid. 
Note 3.1. Let (D (X) = rrg (X), where pip (S) = mint,ttur~, rp (.z - y), .T, !f E X 

is the so-called Chebyshev v-radius of set ,Y ((r is a proper convex function). In par- 
ticular, if cp (I) 2 (z’z)“, then r,, (,Y) -.-d (.v), where a (?;) = r.18~1 (p (1; X) - 11 6 1: x 1’ 

is the diameter of .I’ [5]. It follows from formulas (2.1),(3.2) (also see [3, 41) that 
the quantities rq (X: (6;)), r, (X (8; I<* (. 1 t) 1 .I-*]) do not depend upon the choice of 
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control U. We note that a formula for r9 iX (9 a)) was derived in [4] when 5 s 6 

4. Fundamental c$tlmate, Suppose that in time :2t system (l.l),(l.Z) is 
carried from position {t, it ( .)} to the position {t -/- ilt, &,.~~ (.)I. To solve the 
problem we should estimate the increment 

A2 (1, .) =- c‘O (t -t At, jw ( .)) - 6’ (t? 51 ( .)I (4.1) 

As a prelim~na~ we prove a number of auxiliary assertions. 
Consider the function y (I, X. 1) - 9’ (f, X. 2) - (ii* (-l). We denote 

1‘ (t, .) : I‘ (I, 5, ( .)) (1” : SUP[ y (t, x (t, .), 2) :’ (t, *y ((7 *), 1”)) 

The boundedness of L’ (I, *) is ensured by the following additional assumption which 

we adopt in what follows: 

Condition 4.1. For the arbitrary number f$’ > 0 and the arbitrary convex eve- 
rywhere positive-definite homogeneous function b (I), there exists a number “VI (Iv; 

p (1)) such that the inequality 11 II\ -<: nr, holds for - r < Ai, p (I; X) < f~ (I) . 
Condition 4.1 is a constraint on the function (o (1). Let (c (x) be the Euclidean dis- 

tance r (,I~, 1\f) from r to a convex set nf. Then 

Hence it follows that Condition 4.1 is satisfied when cp (cr) =;T r (T, ~11). We say that 
the functional F (t, & (_.))== F (1, .) . IS continuous along (direction) 

(At, 65, (*)I = {At, St+jt f=) - 5t (.)I 

at point {t, Et(.)}, if 

F (t -t- AAt, 5t+,.~t (.)) --, F (6 5t (.)), h -+ 0 

Lemma 4.1. Let functional X (t, -f be continuous along {At, A& (e)) at 
point (t, & (.)I. Then at this point the functional &” (t, *) is continuous along {At, 

65, (‘11. 
From (3.4) it follows that the functional y (t, X (t, .), 2) is continuous along {At, 

Act (*)} at point {t, & (s)}. We have (0 < h < 1) 

y (1 + XAt, X (t + hbt, .), ha) = E” (t + AAt, *> > (4.3) 

y (t + Mt, s (t + 7LAf, *), 1”) 

y (4 x (t, a), b.3) < t.O (t, *) = y (t, x (t, -)t E”) (4.4) 

1” E r (t, .)t ~,.a E I’ (t + AAt) 

By virtue of the continuity of X (t, -) along {At, A & (.)} , for CT > 0 we have 

y (t + hAt, x (t + 1?4t, *), I”) > E” (t, .) - CT 

provided h < 6 (‘J). 
Let @A (1) =- mas F (1; X (t + At, *)) over all sets X (t + At, e) into 

which X (t, *) can be carried in time At under the constraints (1.3) on II, 2‘, E. 

Then, by Condition 4.1 (N -= &” (t, a) - 6) we obtain [lp.~ 11 < K, provided 
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h f 6 (N, P (k x (t f AAt; *)) < PA fl) 

The continuity of &” (t, .) along (At, A& (.)} at point {t, ct f.)} follows from 

the compactness of set // 1,~ // < K, from the continuity of X (t, *) along {At, AC1 
(. )} , and from inequalities (4.3), (4.4). 

Lemma 4.2. Let functional e” (r, .) be continuous along {At, A& (.)} at 
point {t, & (-)}. Then the set r f-c, *) is upper-semicontinuous along {At, A& (m)} 
at this point (i. e. for any (I > 0 there exists 8 > 0 such that the inclusion r (t + 

hAt, +) c r, (t, .) holds for X < 6, where I’, is the o-neighborhood of r). 
Lemma 4.3. Suppose that at each point {t, [, {.)} oftheregion 8 (r, .) > 

0 the set 1‘ (t, .) consists of a single element 1” (t, & (e)) = 1” (r, *). Then the 
functional 1” (T, -) is continuous along {At, A& (s)) ar point {t, & (*)}, if E”(T, *) 

is continuous along direction {At, Aj, (+)} at this point. 

The proof of Lemmas 4.3, 4.3, using Condition 4.1, follows the standard scheme in 
[I]. The next assertion follows from the properties of convex functions. 

Lemma 4.4. For the hypotheses of Lemma 4.3 to be fulfilled it suffices to satisfy 
one of the following conditions: 

A. The function - y (T, X (T, a), 1) is strictly convex in 1. 
B. cp (2) = r (x, Af). where M is a convex set, and the function -7 (T, X (‘6, 

a), I) is convex in 1. 

Let us pass on to the estimate of increment (4.1). In the notation of Sect. 3 let 

5 t+*At (*) = [c*t+at (*) 1 x*1, r, (*) == {vt i-1, Zt bl} 

By formula (3.4) we find 

Aso (t, h, b) = E” (t + hdt, a) - E” (t, a) = (4.5) 

y (t + hilt, X (t + &At, .), Ex.~) - y (6 X (t, -1, lo) 

whence for any I”, &, 0 ,q h 6 1 

Ad’ (tt A, *) > Ay (t, A, I”,) Ad’ (t, A, a) < by (t, h, &A) (4.6) 

Aby (6 h, 0 = y (t + LAt, X (t + AAt, .f, I) - y (t, X (t, a), 2) 

The increment A8 (t, 1, *) corresponds to the realization y* (z), z* (r), generated 

on the interval t E [t, 1 $ At] by the quantities U* (t), v* (T) E* (r). In order 
to write out explicit expressions for the right-hand sides of inequaliiies (4. ii), we esti- 
mate the increment 

Ap (t, A, I, .f = p (--I; X(6, t + hAt)X (t + AAt, *)f - 
p (--1; X(6, t + kAt)X (t, -1) 

for which we make use of formulas (3. l), (3.2) with I? -:= t + AAt. By direct calcu- 
lations we obtain 

Ap (t, h, I, .) = - Z’X(S, t + hbt) [z* (t -{- &At 11) - (4.7) 

f+hAf 

f 
i 

X (t + hbt, E) C (E) u* (E) c&j - Z’X (6: t) x8 - 

p (- Z’X (6, t); x (t, .)) + @(l, VA* (*), Eh* (.), x*, t, A) 

f). (*) = f (r), t Q T < t + hdt 
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(3 (1, 1’;. (a), F;;: (.)? x*, t, a) ,- 

p (--I; G(l) (t, z”) $q Gw ft + AAt, i, i:* (.), ;* (.))) 

Ler 
G" ft, h, ..c*, veA 1 (-), g*h (s)) =- 

The condition G(l) (t, x*) n G(2) (t -+ LAt, t, u* (+), E* (a)) -k x* 

8 s- G” (I, 2”, x*, 2+x (.), g*h (.)) $g x (t, .) 

is valid by construction. From formulas (3.4)‘ (4.7) - (4.9) we find 

(4.8) 

(4.9) 

f+).Al 

AT(L L I)== j f( z, u* (z), u* (z), 2) dt i- a* (1, h, I) 

f (7. 71, z’, I) -- i(’ (i’,?i (6, T)B (T); 1’) - p (l’x (6, T}c (a); @) - (4.10) 
_ 1’X (S, T) (B (a)u” (1.) - c fz)uJE (?)) 

a* (17 h, l) = p (-1; G” (t, ii, P, II*), (.), E”>. (.))I - 

I’ (---1; .x (6 *)) 

Let F' ft. .) be continuo~ along {At, Ait (s)) at point (t, ct (*)I. Then by Lemma 
4.2 the set f (f: e) is user-semicontinnous along (At, Act (.f) at this p&&Hence 

we arrive at the following estimate. 
Le m ma 4. 5, Let t.O (r, *) > 0. Then for any o > 0 there exists 6 > 0 such 

that 
f (T, u, Z‘, IAh) <:; IIIRSp (f (z, 78, z’, so) + 0, lo E I’ (t, *) (4.11) 

for arbitrary lxa E r {f .!- AAt, .), t E [t, t + k&l, li .< 6. Estimate (4.11) is 
uniform in all 26 E I*, 2) ~5 c), $ E K and in all continuations &.+A~ (a) of reali- 
zation c, ( .) under co~traints (1.3) for which 8 (t, +) is continuous along (At, 

A;, (-)}. 
We note that the condition 

following from (4.8),(4.9) is valid. Inequalities (4.6) formula (4.10) and Lemma 4.5 

lead to the estimates (k -+ I), I’ ~2 I‘ (I. . )) 

Ij~jr slip h-‘_I?” ft. i,, +f *ZL lniI.S,a f (t, lb* (t), r* (t), I”) 3-- 

lirn irtf i.-” (blkilXj- Cd (t, 3-, I”)) 

If p7 (f, .) is continuous along {At, A<, (.)}, then the condition 

Ikli3Sp (--l“.l'* - ib (--1"; S (t, *))) 0, 1' ,f IT fly *) 

is satisfied, which together with (4.12) and (4.13) lead to the equality 

ileo (f. *)! 

----I df 
-_: xn;\sp f(f, a*(t), c* (t), q, I” E I‘(4 .) (4.14) 

it*, (8 

(after passing to the limit as i. --+ 0) in (4.13)). Here the ‘derivarive of 6 (!I * ) 
along the realization (t, {, ( .) } generated by controls IL* (21, P* (r) stands on the 
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left-hand side. The equality cited is an analog of a well-known formula for the direc- 

tional derivative of a function of the maximum [I 0, 111, depending in the case being 
considered on a specific argument c*( .). Its application to a linear differential game 

with complete information was discussed in [12, 131. Formula (4.14) is transformed in 

an obvious manner if r (t. . ) consists of a single element. 
If {t, 51 (e)} is a point of discontinuity of 8 (t, e) along {It, Act (.)), then the 

inequality A() (I, A, 1, a) < -o /I I 11, (5 > 0 is valid for arbitrary h l< 6 (o). 
Then, the estimate 

limb,,, F0 (t + hAt, a) < E” (t, 0) - ciI, Go > 0 (4.15) 

is valid independently of the choice of U, z’, E at point t, and the functional has a 
jump of finite magnitude at point {t, ct (.)} . 

Condition 4. 2. The condition 

(4.16) 

is satisfied in the region co (t, .) > () . 
Condition 4.2 is automatically satisfied if r (t, - ) consists of a single vector for 

each position {t, j, (m)} (L emma 4.4). For a suitable choice of 1~~ y= II (t) this con- 
dition ensures the estimate 

e (I + At, .) < e’ (t. .) + o (At) (4.17) 

uniform in all t G 1 t,, ,6 1 and in all positions St (a) from a closed bounded subset of 

the region co (t, .) > 0 (CJ (At) (At)-’ -+ 0 as Yt --f 0). In fact, suppose that the 
quantities Z’ = ?.* (z). 5 -= ;” (T, are realized on the interval T E It, t A ilt].Let 

':, ~7 (If)_' i :' (' T) dT 

0 

From the vectors i.*:* E Q. i,* - p TV .I we choose the vector II* E P ensuring the inequal- 

ity de? (t, . ; dt *,< 0. We arrive at the required inequality (4.17) bynowsetting il* (t) -E 
11~ and using (4.9), (4.14), the second of inequalities (4.6). Lemma 4.5, and condition 
(4.12). Summing conditions (4.15), (4.16) we arrive at the next assertion. 

Lemma 4.6. Suppose that Conditions 4.1, 4.2, and the condition a0 (t, .) > 0 
are satisfied and that the quantities ,x*, c* (T), 5* (T) have been realized on the inter- 
val t G It. t f Ati . Then a control II* (T) 3 71% exists such that estimate (4.17), 
uniform in all t E It,,, 6 1 and in all positions St (e) from a closed bounded subset of 

the region e” (t, .) > 0 is valid for the new position {t + At, <,+A, (0)} generated 
by the quantities x*, II* (T), v* (T), E* (t) . 

. A condition analogous to the property of stability of program absorption sets in the 
theory of differential games [Z] is ensured by estimate (4.17) for sets of initial positions 
{t, gt (m)} from which the significance of the criterion a’ (i. .) .<, E~ (t,,, .) = 

a0 (t0, cl0 (a)) is guaranteed in the class of program controls. It is not the purpose of 
the present paper to discuss the corresponding formalization. 

5. Solution of the problem. From estimate (4.17) at once follows the 
existence of the A-strategy CT, (t, TV, & (.)) yielding the result 

e3 (0 7 54 (.)I -< co (f,,, L” (*)) + a 

where the quantity rl. can be made as small as desired by an appropriate subdivision of 
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the interval It,, 0 1. On each subdivision interval 7 E [rf, ti+t) we can take a con- 
stant control IE* (t) s u * which should be chosen from conditions (4.14), (4.16). The 
following assertion is valid. 

Theorem 5.1. Suppose that the position {to, & (+)} is given, that co (to, cl, 
’ .)) > 0, and that C on i ions 4.1, 4.2 are satisfied. Then for any d t 
ist a number a, > U and a A-strategy ~7, (t, ti, 

a > 0 there ex- 
crt (. )) ensuring, by virtue of ine- 

quality (1.8). the condition 

for A < 4a l 

e’ \6 ) g, (a)) = w (S ) *) :< E” (to, L, (*)) + x 

A constructive description of the strategy indicated is given by conditions (4.14) 

(4.16). (3.4),(&l). Relation (2.1) was described in detail in [3, 43. Let the serf \t, +’ 
consist of the single element 1” (t, a) for each point of region E” (t, .) > Cl. condi- 
tion 4.2 is ensured by controls a(e) satisfying the maximum condition (see (4.14)) 

I”’ (t, .)X($) t)B (t)z#) = max,lO’ (t, *)X (6 I t)B (Qu. (5.1) 

The convex set Uce) (t, .) = {n(c)} of all extremal elements of problem (5.1) is upper- 

semicontinuous along the directions {At, Act (a)} along which 8 (t, .) is continuous. 

From the properties of X (I, -) (see Lemma 2.2) it follows that the set (ti} of jumps 

of x (t, - )is not more than countable for each realization ys [ m ] depending on u [t], 
E [t], u [t] ; the instants at which the jumps appear depend only on 2’ 111, E It]. Inturn, 

the realization a” It] = F” (t, & (a)) g enerated by 3 Itl, zz It] can have jumps only 
on the set (ti), The latter guarantees the existence of a solution of system (1.4)-(1.6) 
when U (t, .) = UC”) (t, s). The optimality of U(e) (t, .) is ensured by the equality 

&’ (t, .) / dt << 0 following from (5.1) and valid along any of t-he motions of (1.4)- 

(1.6) generated by U@)(t, +) and j/t 1.1. Thus, the strategy U(e) (I, .) constructed is 
an optimal x-strategy because the functional V” (t, X (t, +)) = [I@‘) (t, -) is semi- 

continuous in {t, X> but not in {t, gt (-)}. 
Theorem 5.2. Suppose that the position {t,,, ;I, (-)} is given, that E” (&,, 51, 

(. )) > u, and that the sets I‘ (t, .) contain one element each for each of the positions 

{t, St (+>}+ Then U” (t, X (6 s)) is an optimal z-strategy ensuring, by virtue of 

CL 8)9 the condition g (fj ) g* (.)) = CD” (6, .) < &” (t,, &, (*)) 

Finally, we note that for ideally observable systems [ill the set X (t, ‘) consists of 

one point z* (i, .) and U” = U” (t, 2’ (t. *)). 
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We consider a game problem [ 1, 21 similar in formulation to the problems in 

f3 - 51 and being a direct continuation of the results in [I?]. Two material points 
of unit mass (the first and second players) move in a three-dimensional space 

under the action of controls Fi, Fz alone. The control u = F1 is bounded in total 

momentum, while the control - c = F, is bounded in absolute value. The game 
termination set M is an arbitrary fixed point in the space of relative positions 
and velocities of the players, while the payoff is the time taken to lead a relative 

trajectory to this point. The first player minimizes this time and the second max- 
imizes it. The solution is in many respects analogous to the solution in [6] where- 
in the minimax time up to “hard” (with respect to the coordinates) and “soft” 
(with respect to the coordinates and velocities) contact of the points was deter- 
mined. In the conclusion we consider the problem of soft contact of two control- 
led points in a linear position central gravity field. In the course of solving the 

problem in the title we form a vector-valued function Q (w, p) depending upon 
the game’s position w and on a parameter p, and we divide the whole space W 
of possible positions into the regions W” and lJJO. In region H’” there exists a 

function pz (w) < 0, defined as the smallest root of the equation q (w, p) 0. 


